La portada de mañana
Acceder
La hora de Casado: el discurso de Abascal allana el camino al 'no' del PP
El estado de alarma, principal escollo en la negociación de Sanidad con las Comunidades
Opinión - Fact-check para Trapero, por Elisa Beni
Noticia de agencia

Noticia servida automáticamente por la Agencia EFE

Esta información es un teletipo de la Agencia EFE y se publica en nuestra web de manera automática como parte del servicio que nos ofrece esta agencia de noticias. No ha sido editado ni titulado por un periodista de eldiario.es.

Los modelos tradicionales no sirven para conocer la evolución de la pandemia

Los modelos tradicionales no sirven para conocer la evolución de la pandemia
Madrid —

0

Madrid, 2 oct (EFE).- Los modelos epidemiológicos que se utilizan tradicionalmente para pronosticar el comportamiento de las epidemias no sirven para predecir con certeza la evolución que va a tener una pandemia -ni cuándo alcanzará el pico ni cuando finalizará- mientras la crisis está teniendo lugar.

A esa conclusión han llegado un equipo de investigadores del Centro Nacional de Biotecnología del Consejo Superior de Investigaciones Científicas (CNB-CSIC), que han coordinado un estudio publicado en Proceedings of the National Academy of Sciences (PNAS).

Los modelos tradicionales que se utilizan para conocer la evolución de una pandemia se conocen a nivel mundial como "SIR" (siglas, también en inglés, de Susceptibles, Infectados y Recuperados), pero según los investigadores solo sirven para ofrecer un diagnóstico "probable y variable".

"A lo más que podemos aspirar es a obtener predicciones probabilísticas, como las del tiempo, donde se nos informe de con qué probabilidad se puede alcanzar el pico antes de una fecha dada, por ejemplo", ha explicado la investigadora Susanna Manrubia, del Centro Nacional de Biotecnología (CNB-CSIC) el matemático José Antonio Cuesta (Universidad Carlos III de Madrid) y el físico Mario Castro (Universidad Pontificia Comillas).

El problema que presentan los modelos tradicionales se puede atenuar con más y con mejores datos, y con modelos testados en distintos contextos, "pero no se puede resolver completamente", han señalado los autores en una nota difundida hoy por el CSIC.

En los modelos tradicionales de la epidemiología se divide a la población en clases o "compartimentos": individuos susceptibles, infectados, recuperados, y varias otras dependiendo de cada caso particular.

Esos modelos capturan las características fundamentales de la dinámica de un proceso de propagación de infecciones, "pero en este estudio hemos mostrado que los datos empíricos no pueden predecir el curso futuro de la epidemia, cuándo llegará a su máximo, si habrá o no un repunte, cuál será el número final de fallecidos o si el confinamiento tendrá el efecto deseado", han precisado los autores.

Mediante los datos oficiales publicados por el Ministerio de Sanidad y las comunidades autónomas, con reportes diarios de casos confirmados, pacientes recuperados y fallecidos, se pueden obtener un conjunto de parámetros "compatibles con las observaciones mediante métodos de ajuste estadístico", ha indicado la investigadora.

Pero ha observado: "si bien el ajuste es excelente para el conjunto de España y sus comunidades autónomas, la sensibilidad de los modelos SIR a variaciones en el valor de los parámetros, como la tasa de infección del virus, impide la predicción a medio y a largo plazo".

"Por desgracia, este resultado también implica que no podemos determinar en estos momentos la magnitud ni la duración de la segunda ola", han indicado los investigadores.

Etiquetas
Publicado el
2 de octubre de 2020 - 12:47 h

Descubre nuestras apps

stats